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A method for the numerical evaluation of the oscillatory 
integrals associated with the cuspoid catastrophes: 
application to Pearcey's integral and its derivatives 

J N L Connor and P R Curtis 
Department of Chemistry, University of Manchester, Manchester M13 9PL, UK 

Received 4 August 1981, in final form 16 October 1981 

Abstract. A numerical method for the evaluation of the cuspoid canonical integrals and 
their derivatives is described. The method exploits Cauchy's theorem and Jordan's lemma 
to write the infinite integration path along different contours in the complex plane. The 
method is straightforward to implement on a computer and in many cases results of high 
accuracy can be obtained using standard quadrature techniques. Application is made to 
Pearcey's integral P(x, y )  and its two partial derivatives and the method is shown to have 
some significant advantages over other techniques that have been applied to this problem. 
Tables of P(x,  y), aP(x, y)/ax, aP(x, y) /ay  and the real zeros of P(x, y)  are presented for the 
grid -8.O<xS8.0and O c y c 8 . 0 .  

1. Introduction 

This paper is concerned with the numerical evaluation of the integral 
W 

Cn(a) = I exp(if,(a; U)) du a = (a19 a2 , .  a ,  a n - 2 )  (1) 
-W 

and its ( n  - 2) partial derivatives 

ac"(a)/aal, aC,(a)/aa,, * . e ,  ac"(a)/aa"-, (2) 
where f, (a ; U )  is the polynomial 

with U and a k  real, and n is a positive integer restricted to n L 3. In catastrophe theory 
(Thom 1975, Poston and Stewart 1978) the polynomial (3) is the canonical form for the 
cuspoid catastrophes, with n -2 the co-dimension of the singularity. It is therefore 
appropriate to call (1) the cuspoid canonical integral. 

The ( n  - 1) integrals (1) and (2) also arise in connection with one-dimensional 
oscillating integrals whose exponents possess many nearly coincident stationary phase 
or saddle points. When such an integral is evaluated by uniform asymptotic techniques, 
the result can be expressed in terms of the canonical integral (1) and its derivatives (2) 
(Bleistein 1967, Rice 1968, Urselll972, Berry 1976, Connor 1974,1976). A key step 
in the theoretical treatment of many short-wavelength phenomena, such as collisions of 
atoms, molecules and heavy nuclear ions, the propagation of water, electromagnetic 
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1180 J N L Connor and P R Curtis 

and acoustic waves, as well as scattering from surfaces, is the uniform asymptotic 
evaluation of oscillating integrals with many coalescing saddle points. Thus it is 
necessary to develop methods for the numerical evaluation of the integrals (1) and (2) if 
these short-wavelength theories are to be applied in practice. 

For n = 3 ,  the integral (1) is the well characterised regular Airy integral (Airy 1838, 
Miller 1971), or fold canonical integral in the language of catastrophe theory. There 
have been many numerical applications of the uniform Airy asymptotic approximation 
to physical problems following on from the initial researches of Chester et a1 (1957). 

When n = 4, equation (1) becomes the cusp canonical integral or Pearcey’s integral 
(Pearcey 1946), which we shall henceforth write in the form 

m 

P(x,  y )  = I exp[i(u4+xu2+yu)] du. (4) 

Pearcey’s integral occurs in the short-wavelength description of many physical 
phenomena, and a guide to the relevant literature is given by Connor and Farrelly 
(1981b)-see in addition the recent papers by Taborek and Goodstein (1980a, b), 
Wright (1980), Da Silveira (1981), Berry and Upstill (1980) and Stewart (1981) as well 
as the books by Schulman (1981) and Gilmore (1981). 

However, only one numerical application of the uniform Pearcey asymptotic 
approximation has been made to date (Connor and Farrelly 1981b). There have been 
no numerical applications of uniform asymptotic techniques when n 3 5 that we are 
aware of. 

In order to make numerical applications of the powerful uniform asymptotic 
methods mentioned above for n > 3 ,  it is clearly necessary to be able to evaluate the 
integrals (1) and (2) efficiently and accurately for a wide range of values of their 
arguments. The purpose of the present paper is to describe a numerical method we 
have developed for the calculation of the integrals (1) and (2). In many cases the 
method is simple and straightforward, and is easily programmed on a computer. It 
exploits the fact that the integrands of (1) and (2) are analytic functions of U in the finite 
complex U plane. A combination of Cauchy’s theorem and Jordan’s lemma then allows 
the most convenient integration path in the complex u plane to be chosen for the 
numerical quadrature. We describe our integration method in § 2. Although the 
method in principle works for any n, in practice the most important cases are for values 
of n which are not too large (e.g. n = 4,5,6). In § 3 we apply the method to Pearcey’s 
integral and its two derivatives and show that our method has some significant 
advantages over other numerical techniques that have been applied to P(x ,  y ) .  Our 
conclusions are in § 4. 

- X  

2. The contour integral method 

The main numerical problem associated with the cuspoid canonical integral (1) and its 
derivatives (2) is the behaviour of the integrand at the end-points of the range of 
integration. This is one of infinitely rapid oscillations, making a direct numerical 
quadrature impossible. 

To resolve this problem, we choose a different contour in the complex U plane along 
which to perform the numerical integration by exploiting the fact that the integrand of 
(1) is an analytic function of U in the finite complex U plane. Our method is a 
modification of one described earlier by Connor and Farrelly (1981a). 
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First we write (1) in the form 

When n is odd we shall have to consider each integral in equation ( 5 )  separately; for n 
even this will not be necessary. 

One method which has been used for the numerical quadrature of integrals of the 
type ( 5 )  (Connor and Farrelly 1981a) replaces the contour from 0 to CO by a ray from 0 to 
CO exp(*i?r/2n) together with a contour from 00 exp(*i?r/2n) to 00 where the plus sign is 
taken, except for n odd in the second integral of equation (3, when the minus sign is 
taken. An application of Jordan's lemma shows that the contribution from the 
arc CO exp(*i?r/2n) to CO vanishes. Along the ray 0 to CO exp(*i?r/2n), the appropriate 
integrands of equation ( 5 )  eventually diminish rapidly like expi-u"). 

To illustrate the advantages of this method as well as its main difficulty, we use 
Pearcey's integral as an example and write equation ( 5 )  in the form 

m 

P(x, y )  = 2 cos(yu) exp[i(u4+xu2)] du. 
0 

Figure 1 shows the real and imaginary parts of the integrand of equation (6) in the 
complex U plane for x = 3, y = 2. The oscillatory nature of the integrand along the Re U 

axis can be clearly seen. Along the ray 0 to CO exp(&r), on the other hand, the integrand 
rapidly diminishes with no violent oscillations along the way. It is thus straightforward 
to obtain an accurate value for P(x = 3, y = 2) to, say, seven or eight significant figures 
along this contour using standard numerical quadrature techniques. 

Figure 2 shows the same plots as in figure 1 but for the case x = -3, y = 2. There are 
now large oscillations along the path 0 to CO exp(&r). These oscillations arise from the 
term exp(ixu2) in equation (6) which, for negative x, can become very large before the 
term exp(iu4) is eventually dominant. Although a numerical quadrature can obtain 
accurate values for P(x  = -3, y = 2) for the situation shown in figure 2, this method 
eventually fails as x becomes more negative (Connor and Farrelly 1981a). 

The problems discussed above can be avoided by choosing the integration contours 
shown in figure 3. In the following we shall only consider the case where n is even since 
the discussion for n odd is very similar. For even n, the contour proceeds from 0 to a 
point on the real axis R, then along the arc of a circle R to R exp(i?r/2n) and finally 
along the ray R exp(ir/2n) to CO exp(i?r/2n). The contribution from CO exp(ir/2n) to 
CO is again zero by Jordan's lemma. In this way, for a suitable choice of R, the violent 
oscillations that may occur along the direct ray from 0 to R exp(i?r/2n) are avoided. 

In order to see what factors govern the choice of R, let us consider the first integral in 
equation ( 5 ) .  Our choice of contour reduces the problem of calculating C,(a) to the 
numerical evaluation of the two finite integrals 

/oRexp(ifn(a; U ) )  du (7) 

and 

exp(if,(a ; U)) du (8) 
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Figure 1. Plot of the integrand of equation (6) for x = 3, y = 2: ( a )  Re(2 cos(yu) exp[i(u4+ 
xu' ) ] )  and (6) Im(2 cos(yu)  exp[i(u"+xu*)]). 

as well as the infinite integral 
m exp(irr/2n) 

exP(ifn (a ; U))  du (9) s R exp(im/Zn) 

exp(i-/r/2n) j exp( -rn + k = l  c iak exp(ik7r/2n)rk) dr. 

which can be written in the alternative form 
n -2 m 

(10) 
R 

In the integral (lo), if necessary we can always choose R sufficiently large that the 
modulus of (10) is arbitrarily small and hence negligible in the quadrature evaluation. 
This is because the factor exp(-r") for r > > l  dominates any terms of the kind 
exp(iak exp(ik-/r/2n)rk) with k < n. 

More formally, suppose we require the modulus of the integrand of (10) to be less 
than or equal to, say, exp(-d) with d > 1. Then R is required to be the largest real root 
of the polynomial 

n -2 

rn + c a k  sin(k-/r/2n)rk - d = 0. (11) 
k = l  
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Figure 2. The same as figure 1 except for x = -3, y = 2. 

When solving numerically for this root it is helpful to have a bound on the location of the 
roots of the polynomial (11) in the complex r plane. We have found the following 
theorem of Datt and Govil (1978) to be useful in this regard. Let A = 
max{d, lakl s in(k~/2n)}  for k = 1,2 ,  . . . , n - 2; then the polynomial (1 1) has all its zeros 
in the ring-shaped region of the complex r plane given by 

s I r l s l +  1-- ' )A. (12) 
d 

2(1 +A)"-'(nA + 1) ( ( l+A)" 

The above discussion has shown that we can always choose R so that the integral 
(10) is negligibly small. On the other hand, we do not want to choose R too large in case 
the oscillatory nature of the integrand of (7) makes it difficult (or even impossible) to 
obtain accurate values for this integral by numerical quadrature. Thus in practice a 
compromise value of R must often be used, one that facilitates the numerical evaluation 
of both (7) and (10). If the value of R does not make the integral (10) negligibly small 
then it is necessary to evaluate (10) by a numerical quadrature. As an alternative, the 
integral (10) could be expanded in an asymptotic series, with R chosen so that this series 
is a sufficiently accurate approximation to (10) (see Berry et a1 1979). Having found a 
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- - 
O:- 2 ~ _ / 2 n  

9 . . , , 

suitable value of R for the integrals (7) and (lo), the remaining integral (8) can also be 
evaluated by numerical quadrature. 

The method we have described above has a number of useful properties. 
( a )  The method is straightforward to implement on a computer and results of high 

accuracy can be obtained (e.g. seven or eight significant figures for P(x, y)-see 0 3). In 
the simpler cases of IE = 4 and 5 and for values of the parameters a which are not too 
large, the integrals (7)-(9) can be evaluated by standard quadrature routines that are 
available in most computer program libraries. In more difficult situations it may be 
necessary to use more specialised techniques. For example, the integral (7) may require 
methods that have been developed for oscillatory integrands (see the discussions of 
Davis and Rabinowitz (1975), Rice (1975) and Engels (1980)). When using a quadra- 
ture routine it is important to avoid any spurious numerical convergence to which 
oscillatory integrals are prone. In this situation it is helpful to make contour plots of the 
integral. If tabulated values alone are examined, it can be difficult to spot such errors, 
especially on a coarse grid. 

( b )  The method can be readily applied for different values of n, unlike some other 
techniques (such as differential equation methods) in which each n must be treated as a 
separate case. 
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( c )  The method works equally well for the derivatives (2) of the canonical integral 
as for the canonical integral itself. This is important in applications since the uniform 
asymptotic techniques mentioned in 4 1 require the evaluation of all (n - 1) integrals (1) 
and (2). If only the canonical integral is evaluated, then one is restricted to less powerful 
transitional asymptotic approximations. 

(d) Alternative contours to the one described above (namely O-* R -* 
R exp(*ir/2n) + 00 exp(*i.n/2n)) can be used when convenient. One such alternative 
contour is shown in figure 3: instead of proceeding along the real U axis to R, it 'cuts the 
corner' by leaving the real axis at a point closer to the origin. An integration path that 
proceeds directly from 0 to R exp(&i.n/2n) is the most suitable contour when the 
integrand is free of violent oscillations as in figure 1 for Pearcey's integral. Also, the 
path between R and R exp(*i.n/2n) need not be an arc of a circle; other contours such 
as a straight line can be used. Finally, we note that it is not even necessary to integrate 
(9) along the ray arg U = v/2n since the integrand actually converges in the sector 
0 < arg U < r /n .  Although the fastest decrease in the modulus of the integrand is 
obtained for arg U = r/2n, it may be convenient to use a different path lying in the 
sector 0 < arg U < tr/n in some situations. 

(e) In our discussion so far we have always used the canonical form (3) for the 
cuspoid polynomial. However, in some applications it may be more suitable to use the 
form 

n -2 

k = l  
anun +an- lu"- l+ C akuk 

in the definition of the canonical integral where an-l and a,, are real numbers. It is clear 
that our method, with obvious modifications, also applies to the non-canonical form 
(13). 

(f) Our technique for dealing with an infinitely oscillating integrand by exploiting 
Cauchy's theorem and Jordan's lemma can also be applied to the two-dimensional 
canonical integrals for the elliptic and hyperbolic umbilic catastrophes since both these 
integrals can be reduced to one-dimensional integrals by means of suitable trans- 
formations (Poston and Stewart 1978, Berry et a1 1979). 

3. Application to Pearcey's integral and its derivatives 

In this section we apply the method of § 2 to Pearcey's integral (4) and its two partial 
derivatives 

uz exp[i(u4+xuz+yu)]du 

and 
00 

-- ap(x' 'I - i J-, U exp[i(u4 +xuz + y u ) ~  du. 
ay 

It is only necessary to calculate P(x, y), aP(x, y)/ax and aP(x, y)/ay for y 
the relations 

0 because of 

P(x, -Y 1 = P ( X l  Y )  
~ P ( x ,  - Y ) / ~ x  = aP(x, y)/ax 

W X ,  -Y)/aY = - a m  YMY. 

(16) 
(17) 
(18) 
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In order to apply the techniques of P 2, we first set d = 100 so that the infinite 
integral (10) is negligibly small. Next we solved the polynomial equation (11) for its 
largest real root R and then evaluated the two finite integrals (7) and (8) by gaussian 
quadrature. In table 1, we report values of P(x, y ) ,  dP(x, y ) / d x  and dP(x, y ) / a y  for the 
grid x = -8.0 (2.0) 8.0 and y = 0.0 (2.0) 8.0. Using the error control parameter in the 

Table 1. Values of Pearcey’s integral P(x, y )  and its two partial derivatives JP(x, y ) / a x  and 
aP(x, y ) / a y  for the grid x = -8.0(2.0)8.0 and y = 0.0(2.0)8.0. 

X Y  Re P(x, y )  Im P ( x ,  y )  Re W a x  Im aP/ax Re a w a y  Im w a y  

-8.0 0.0 
-6.0 0.0 
-4.0 0.0 
-2.0 0.0 

0.0 0.0 
2.0 0.0 
4.0 0.0 
6.0 0.0 
8.0 0.0 

-8.0 2.0 
-6.0 2.0 
-4.0 2.0 
-2.0 2.0 

0.0 2.0 
2.0 2.0 
4.0 2.0 
6.0 2.0 
8.0 2.0 

-8.0 4.0 
-6.0 4.0 
-4.0 4.0 
-2.0 4.0 

0.0 4.0 
2.0 4.0 
4.0 4.0 
6.0 4.0 
8.0 4.0 

-8.0 6.0 
-6.0 6.0 
-4.0 6.0 
-2.0 6.0 

0.0 6.0 
2.0 6.0 
4.0 6.0 
6.0 6.0 
8.0 6.0 

-8.0 8.0 
-6.0 8.0 
-4.0 8.0 
-2.0 8.0 

0.0 8.0 
2.0 8.0 
4.0 8.0 
6.0 8.0 
8.0 8.0 

-0.337 44 
0.159 28 

2.385 66 
1.674 81 
0.924 03 
0.646 98 
0.520 85 
0.447 92 
1.004 22 
0.965 27 
1.963 41 
0.354 55 
1.124 75 
0.993 72 
0.740 10 
0.587 73 
0.495 82 
0.753 72 
0.294 78 
0.143 60 
0.080 86 

0.596 48 
0.766 60 
0.683 91 
0.588 82 

1.178 88 
0.048 38 
0.023 99 

-0.647 56 

-0.385 92 

-0.128 39 

-0.235 37 
-0.476 83 

0.225 51 
0.515 90 
0.565 95 
1.069 30 

-1.101 57 
-0.490 13 
-0.180 03 

0.510 18 
-0.308 92 
-0.567 03 
-0.096 57 

0.229 86 

-0.876 36 
-1.483 42 
-0.609 62 
-1.085 51 

0.693 73 
0.729 01 
0.593 70 
0.500 05 
0.437 62 

-0.114 80 
0.464 13 

-0.734 19 
-0.051 84 
-0.176 08 

0.312 73 
0.413 32 
0.403 53 
0.376 68 

-0.239 33 
-0.843 73 

0.902 44 
0.892 42 

-0.545 14 
-0.565 16 
-0.132 66 

0.081 29 
0.169 33 
0.348 48 
1.084 42 
0.240 46 

0.592 03 
-0.537 96 

-0.509 21 
-0.668 16 
-0.405 73 
-0.192 54 

0.225 85 
0.582 29 
0.021 99 
0.469 15 

-0.260 97 
0.545 15 

-0.308 14 
-0.614 55 
-0.532 41 

1.692 77 
2.903 65 

0.541 89 
-0.163 43 

-0.566 07 
-0.215 94 
-0.086 96 
-0.045 95 
-0.029 09 
-0.887 49 
-2.555 01 

0.598 63 
0.116 05 
0.139 22 

-0.147 11 
-0.099 09 
-0.057 68 
-0.036 57 
-0.157 57 

1.956 37 
-0.777 99 
-1.022 67 

0.574 92 
0.253 10 

-0.016 09 
-0.050 79 
-0.042 64 
-0.126 00 
-0.728 55 

0.315 62 
1.199 11 

0.358 19 
0.251 58 
0.064 33 

-0.775 56 

-0.001 03 
- 1.696 20 
-1,160 47 
-0.419 76 
-1.125 62 

0.441 81 

0.183 33 
0.219 47 
0.11029 

-0.553 35 

-3.158 15 
-1.149 39 
-2.588 17 

1.522 44 
0.234 47 

-0.069 98 
-0.057 63 
-0.037 60 
-0.025 92 

2.113 47 
1.265 98 
2.278 23 

0.342 75 
0.119 25 
0.008 36 

-0.012 00 
-0.013 73 

0.440 99 

-0.785 69 

-1.635 66 
-1.379 35 

0.011 30 

0.242 19 
0.158 87 
0.066 57 
0.027 34 

2.188 22 
0.954 64 
0.156 01 

-0.509 84 

-2.767 56 

-0.268 13 
-0.368 44 

0.100 91 
0.129 34 
0.083 81 
3.11697 

-1.602 47 
-1.196 11 
-0.367 24 

0.799 03 
-0.290 50 
-0.332 49 
-0.015 77 

0.071 81 

0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 

-1.175 31 
-0.197 5 5  

-1.186 12 
-0.599 81 

0.719 24 

0.004 17 
0.071 04 
0.058 42 
0.043 89 
1.772 46 
0.792 28 

0.612 42 
-1.06948 

-0.61 1 87 
-0.448 40 
-0.096 43 

0.011 27 
0.035 39 

-1.123 22 
-1.585 55 
-0.043 81 
-0.731 38 

0.689 61 
-0.411 83 
-0.427 38 
-0.201 50 
-0.077 57 
-0.524 59 

0.909 85 
0.474 30 
0.751 45 

-0.349 29 
0.560 95 

-0.214 10 
-0.362 65 
-0.255 22 

0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 

-0.484 74 
-0.396 87 

0.127 63 
0.915 10 

-0.625 28 
-0.395 59 
-0.185 21 
-0.100 67 
-0.063 52 

0.584 28 
1.001 21 
1.043 56 

-0.414 20 
0.419 59 

-0.345 74 
-0.334 14 
-0.219 89 
-0.146 13 

0.249 77 
-0.120 79 
-1.322 36 
-0.167 95 

0.225 20 
0.445 40 

-0.108 86 
-0.228 59 
-0.202 09 

0.416 49 
-0.720 15 

0.797 69 
0.265 01 

0.284 08 
0.449 40 
0.074 05 

-0.634 75 

-0.099 96 



Numerical evaluation of the cuspoid canonical integrals 1187 

gaussian quadrature routine, our method readily supplies results accurate to seven or 
eight significant figures uniformly over the grid, although this degree of precision is not 
needed in most physical applications. It takes approximately 48s of CPU time to 
calculate P(x,  y), @/ax and aP/ay to an accuracy of lo-' for 512 values of (x ,  y) on a 
grid -8 s x s 8,O s y s 8 using the CDC 7600 computer at the University of Manches- 
ter Regional Computer Centre. 

Since there are no tables of P(x,  y) or its derivatives in the literature to compare with, 
we have checked the accuracy of our results by carrying out two additional calculations. 
In the first of these, we integrated directly along the contour 0 to 00 exp(&.rr) until the 
integrands became negligibly small (Connor and Farrelly 1981a). This method is 
accurate for positive values of x provided y is not too large, but fails as x becomes 
negative (see 8 2). In the second method, we integrated a linear third-order differential 
equation satisfied by P(x,  y) (Pearcey 1946, 1963) with appropriate initial conditions 
(see Connor and Farrelly 1981a). This method is accurate for negative values of x 
inside the caustic 8 x 3  + 27y2 = 0, but becomes unstable for x outside the caustic at 
large y. 

The reason for this (Pearcey 1963) is that there are three linearly independent 
solutions of the differential equation which may oscillate, exponentially increase or 
exponentially decrease when y is large and x is outside the caustic. In the step-by-step 
solution of the differential equation starting from (x ,  y = 0) errors increase exponen- 
tially, eventually limiting the accuracy to which P(x, y) can be calculated in this region. 
This instability is also evident in the sensitivity of the calculated values for P(x, y )  and its 
derivatives to the accuracy of the initial conditions for the differential equation. For 
example, with the initial conditions accurate to ten significant figures and using a step 
size of h = 0.005, P(x  = 10.0, y = 10.0) agrees to four figures with the value obtained 
from our quadrature method. But with the initial conditions accurate to only 8 
significant figures there is a discrepancy of a factor of about 14 between the two 
calculations. 

We always obtained agreement to at least seven significant figures between the 
results of our new method and the two previous methods in those regions of the (x ,  y )  
plane where the earlier methods exhibit no numerical instabilities. Note that our 
quadrature method is numerically stable over the grid of (x ,  y )  values used in table 1. 

Two other methods have also been employed for the calculation of P(x,  y ) .  Exact 
series representations can be obtained for P(x,  y), a P ( x ,  y ) / a x  and a P ( x ,  y)/ay 
(Brillouin 1916, Pearcey 1963, Connor 1973, Maslin 1976, Connor and Farrelly 
1981a, b) which in principle can be summed numerically for any values of x and y. In 
practice, however, this method is only useful for small values of x and y. 

Wright (1977) has used a technique based on the stationary-phase method to 
compute P(x, y).  In this method, a quadrature is performed around the region of the 
one or three real stationary-phase points that contribute to P(x,  y). The tails of the 
integral are estimated by a three-term asymptotic expansion. This method is similar to 
one used originally by Airy (1838) for the evaluation of his integral (see Miller 1971). 
For the swallow-tail canonical integral, which has n = 5 in equation (l), it is necessary to 
perform a numerical quadrature over the contributing saddle points in the complex U 

plane when there are no real saddle points (see in addition Lugannani and Rice 1981). 
In the method of Wright (1977) it is necessary to carry out a saddle-point analysis for 

each value of n. In contrast, a detailed understanding of the distribution of saddle 
points in the complex U plane is not usually required in our method, although when this 
information is available it can be used to advantage, since it provides knowledge similar 
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to that illustrated in figures 1 and 2. However, in some situations, such as when there 
are no real saddle points, a numerical application of the steepest-descent method may 
be the only viable numerical technique (see Wright 1980). 

For P(x, y), Wright (1977) used a three-term asymptotic expansion which gives an 
accuracy of about *0.001. This is adequate for producing contour plots and for many 
other applications. By including more terms in the asymptotic expansion, higher 
accuracy could be obtained by this method. For P(x, y), Wright's method and the one 
presented here are similar in that both of them perform a quadrature for a finite interval 
of the Re U axis. In particular, Wright's method for determining the outermost real 
saddle point is analogous to our method for determining R in equation (11). Wright 
(1977) has also discussed the case n > 4. The main difference between the two methods 
is the technique used for estimating the remainder of the integral. Our method has the 
advantage of ease of application and that results correct to seven or eight significant 
figures are readily obtained; the only limit is the accuracy of the quadrature method 
employed. 

In connection with the theory of wavefront dislocations, Berry er a1 (1979) and 
Wright (1980) have computed some of the real zeros of P(x, y) that lie within the 
rectangle Ixl48.0 and O Q Y  ~ 8 . 0 .  They use a different form for Pearcey's integral, 
namely 

CO 

exp[i($u4+kxu2+yu)] du. (19) I_, C(X, y) = (2*)-'12 

C(X, y) = 7r-l12 P(x, 2'12y). 

This is related to P(x, y) by 

(20) 

TaMe 2. Zeros of P(x, y) for x 2 -8.0 and 0 s y s 8.0. 

This work Berry et a1 (1979) 

X Y X *  Y b  

-1.743 60 
-3.057 91 
-4.035 51 
-4.848 17 

-4.378 04 
-5.554 70 
-5.523 21 
-6.642 85 
-6.446 24 
-6.403 12 
-7.196 29 
-7.147 18 
-7.499 06 
-7.486 29 
-7.857 23 
-7.804 56 

Outside the caustic 8 x 3  + 27y2 = 0 
2.352 1P -1.74 
4.427 07 -3.07 
6.161 85 -4.05 
7.723 52 -4.86 

0.527 68 -4.38 
1.411 01 -5.56 
2.360 94 -5.53 
0.430 39 -6.64 
3.063 89 -6.47 
3.958 06 -6.39 

Inside the caustic 8x3 + 27y2 = 0 

4.565 37 
5.422 06 
1.216 05 
2.029 22 
5.966 69 
6.795 38 

2.33 
4.43 
6.15 
7.71 

0.54 
1.41 
2.33 
0.42 
3.08 
3.96 

a Estimated error k0.05. 
Estimated error k0.07. 
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Berry et a1 (1979) and Wright (1980) estimate the errors in their location of the zeros to 
be *0.05 for x and *0.07 for y. Using our new numerical technique for P(x, y), we have 
calculated all the real zeros that lie within the rectangle 1x1 d 8.0 and 0 c y c 8.0. The 
results are reported in table 2. It can be seen that our improved values for the zeros do 
indeed lie within the estimates of Berry et a1 (1979) and Wright (1980). We calculated 
the zeros by minimising lP(x, y)) using a Simplex method (Numerical Algorithms Group 
1978). This procedure allows the zeros to be calculated with an accuracy of about eight 
significant figures when combined with our quadrature method. 

4. Conclusions 

In this paper, we have described a new method for the numerical evaluation of the 
oscillatory integrals (1) and (2) that are associated with the cuspoid catastrophes. Our 
method uses Cauchy’s theorem and Jordan’s lemma to deform the initial contour of 
integration into the complex U plane. In favourable cases this procedure results in two 
finite integrals which can be evaluated by standard quadrature routines and an infinite 
integral which can be made very small or negligible. The method is straightforward to 
program on a computer and results of high accuracy can be obtained. The same method 
can be applied to the integrals (1) and (2) for different values of n and alternative 
contours of integration can be used when this is convenient. Our method includes as a 
special case that of Connor and Farrelly (1981a). We applied our method to the 
calculation of P(x, y), aP(x, y ) / a x ,  aP(x, y ) / a y  and the zeros of P(x, y)  for -8.0 c x c 
8.0,O d y d 8.0 and showed that it possessed some significant advantages over the other 
available techniques. 
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